Предыстория информационных технологий. История развития информационных технологий с XVIII по XX век

Термин «информационные технологии » появился в конце 1970-х гг. и стал означать технологию обработки информации. Компьютеры изменили процессы работы с информацией, повысили оперативность и эффективность управления, но в то же время компьютерная революция породила серьезные социальные проблемы уязвимости информации. В бизнесе использование компьютера состоит в идентификации задачных ситуаций, их классификации и применении для их решения технических и программных средств, которые называются технологиями – правилами действия с использованием каких-либо общих средств для целой совокупности задач или задачных ситуаций.

Использование компьютерных технологий позволяет компании до­биться конкурентных преимуществ на рынке путем использования основных компьютерных концепций:

· увеличивать эффективность и оперативность работы посредством ис­пользования технологических, электронных, инструментальных и коммуникационных средств;

· максимизировать индивидуальную эффективность путем накопле­ния информации и использования средств доступа к базам данных;

· увеличивать надежность и скорость обработки информации посредст­вом информационных технологий;

· иметь технологический базис для специализированной коллектив­ной работы.

Информационная эра началась в 1950-х гг., когда на рынке появился первый универсальный компьютер для коммерческого использования UNIVAC , который проводил вычисления за миллисекунды. Поиск механизма для вычислений начался много веков назад. Счеты – одно из первых механических счетных устройств пяти тысячелетней давности были изобретены независимо и практически одновременно в Древней Греции, Древнем Риме, Китае, Японии и на Руси. Счеты – родоначальники цифровых устройств.

Исторически сложилось развитие двух направлений развития вычис­лений и вычислительной техники: аналоговое и цифровое . Аналоговое направление основано на исчислении неизвестного физического объекта (процесса) по аналогии с моделью известного объекта (процесса). Основоположником аналогового направления является шотландский барон Джон Непер, который теоретически обосновал функции и разработал практическую таблицу алгоритмов, что упростило выполнение операций умножения и деления. Чуть позже англичанин Генри Бриггс составил таблицу десятичных логарифмов.

В 1623 г. Уильям Отред изобрел прямоугольную логарифмическую линейку, а в 1630 г. Ричард Деламейн – круговую логарифмическую линейку, в 1775 г. Джон Робертсон добавил к линейке бегунок, 1851–1854 гг. француз Амедей Манхейм изменил конструкцию линейки на почти современный вид. В середине IX в. были созданы устройства: планиметр (для вычисления площади плоских фигур), курвиметр (определение длины кривых), дифференциатор, интегратор, интеграф (для получения графических результатов интегрирования) и другие устройства.



Цифровое направление развития техники вычислений оказалось бо­лее перспективным. В начале XVI в. Леонардо да Винчи создал эскиз 13-разрядного суммирующего устройства с десятизубными кольцами (макет работающего устройства был построен только в XX в.). В 1623 г. профессор Вильгельм Шиккард описал устройство счетной машины. В 1642 г. французский математик и философ Блез Паскаль (1623–1662) разработал и построил счетное устройство «Pascaline », чтобы по­мочь своему отцу – сборщику налогов. Эта конструкция счетного колеса использовалась во всех механических калькуляторах до 1960 г., когда с появлением электронных калькуляторов они вышли из употребления.

В 1673 г. немецкий философ и математик Готфрид Вильгельм Лейбниц изобрел механический калькулятор, способный выполнять основные арифметические действия в двоичной системе счисления. В 1727 г. на основе двоичной системы Лейбница Джакоб Леопольд создал счетную машину. В 1723 г. немецкий математик и астроном создал арифметическую машину, которая определяла частное и число последовательных операций сложения при умножении чисел и производила контроль за правильностью ввода данных.

В 1896 г. Холлерит основал компанию по производству табулирующих счетных машин Tabulating Machine Company , которая в 1911 г. объединилась с несколькими другими компаниями, а в 1924 г. генеральный управляющий Томас Ватсон изменил ее название на International Business Machine Corporation (IBM ). Начало современной истории компьютера отмечено изобретением в 1941 г. компьютера Z3 (электрических реле, управляемых программой) немецким инженером Конрадом Цузе и изобретением простейшего компьютера Джоном В. Атанасоффом, профессором университета штата Айова. Обе системы использовали принципы современных компьютеров и были основаны на двоичной системе счисления.

Основными компонентами ЭВМ I поколения были электронно-ва­куумные лампы, системы памяти строились на ртутных линиях задержки, магнитных барабанах, электронно-лучевых трубках Вильямса. Данные вводились с помощью перфолент, перфокарт и магнитных лент с хранимыми программами. Использовались печатающие устройства. Быстродействие компьютеров первого поколения не превышало 20 тысяч операций в секунду. Ламповые машины в промышленном масштабе выпускались до середины 50-х годов.

В 1948 г. в США Уолтер Браттейн и Джон Бардин изобрели транзистор, в 1954 г. Гордон Тил применил для изготовления транзистора кремний. С 1955 г. компьютеры стали выпускаться на транзисторах. В 1958 г. Джеком Килби была изобретена интегральная микросхема и Робертом Нойсом промышленная интегральная микросхема (Chip ). В 1968 г. Роберт Нойс основал фирму Intel (Integrated Electronics ). Компьютеры на интегральных схемах стали выпускаться с 1960 г. ЭВМ II поколения стали компактными, надежными, быстрыми (до 500 тысяч операций в секунду), усовершенствовались функциональные устройства работы с магнитными лентами и памяти на магнитных дисках.

В 1964 г. были разработаны ЭВМ III поколения с применением электронных схем малой и средней степени интеграции (да 1000 компонентов на кристалл). Пример: IBM 360 (США, фирма IBM ), ЕС 1030, ЕС 1060 (СССР). В конце 60-х гг. ХХ в. появились миникомпьютеры, в 1971 г. – микропроцессор. В 1974 г. компания Intel выпустила первый широко известный микропроцессор Intel 8008 , в 1974 г. – микропроцессор II поколения Intel 8080 .

С середины 1970-х гг. ХХ в. были разработаны ЭВМ IV поколения. Они были основаны на больших и сверхбольших интегральных схемах (до миллиона компонентов на кристалл) и быстродействующих системах памяти емкостью несколько мегабайт. При включении происходила самозагрузка, при отключении данные оперативной памяти переносились на диск. Производительность компьютеров стала сотни миллионов операций в секунду. Первые компьютеры были выпущены фирмой Amdahl Corporation .

В середине 70-х гг. ХХ в. появились первые промышленные персональ­ные компьютеры. В 1975 г. был создан первый промышленный персо­нальный компьютер Альтаир на основе микропроцессора Intel 8080 . В августе 1981 г. компания IBM выпустила компьютер IBM PC на основе микропроцессора Intel 8088 , который быстро завоевал популярность.

С 1982 г. ведутся разработки ЭВМ V поколения, ориентированные на обработку знаний. В 1984 г. фирма Microsoft представила первые образцы операционной системы Windows , в марте 1989 г. Тимом Бернерс-Ли, сотрудником международного европейского центра, было предло­жена идея создания распределенной информационной системы Word Wide Web , проект был принят в 1990 г.

Аналогично развитию аппаратных средств разработка программного обеспечения также разделяется на поколения. Программное обеспечение I поколения представляло собой базовые языки программирования, которыми владели только компьютерные специалисты. Программное обеспечение II поколения характеризуется развитием проблемно-ориентированных языков, таких как Fortran, Cobol, Algol-60 .

Использование операционных систем с диалоговым режимом, систем управления базами данных и языков структурного программирования, таких как Pascal , относится к программному обеспечению III поколения. Программное обеспечение IV поколения включает в себя распределенные системы: локальные и глобальные сети компьютерных систем, усовершенствованные графические и пользовательские интерфейсы и интегрированную среду программирования. Программное обеспечение V поколения характеризуется обработкой знаний и шагами в области параллельного программирования.

Использование компьютеров и информационных систем, индустрия которых началась с 1950-х гг., является основным средством повышения конкурентоспособности посредством следующих основных преимуществ:

·улучшения и расширения обслуживания клиентов;

·повышения уровня эффективности благодаря экономии времени;

·увеличения нагрузки и пропускной способности;

·повышения точности информации и сокращения убытков, обусловлен­ных ошибками;

·поднятия престижа организации;

·увеличения прибыли бизнеса;

·обеспечения возможности получения надежной информации в реаль­ном времени при использовании итеративного режима и организации запросов;

·использования руководителем достоверной информации для плани­рования, управления и принятия решений.


В данной статье кратко рассмотрим подходы к пониманию информационных технологий и историю их развития. Итак, информационные технологии (распространенное сокращение - ИТ, от "англ". information technology, "IT") - это широчайший класс дисциплин и областей деятельности, относящихся к технологиям создания, сохранения, управления и обработки данных, в том числе с применением вычислительной техники.
Также под ИТ чаще всего понимают компьютерные технологии, поскольку ИТ имеют дело с использованием компьютеров и программного обеспечения для создания, хранения, обработки, ограничения к передаче и получению информации. Кроме этого специалистов по компьютерной технике и программированию часто называют ИТ-специалистами.

По мнению ЮНЕСКО, ИТ - это комплекс взаимосвязанных научных, технологических, инженерных дисциплин, изучающих методы эффективной организации труда людей, занятых обработкой и хранением информации; вычислительная техника и методы организации и взаимодействия с людьми и производственным оборудованием, их практические приложения, а также связанные со всем этим социальные, экономические и культурные проблемы.
В более широком понимании ИТ охватывают все области создания, передачи, хранения и восприятия информации и не только компьютерные технологии. При этом ИТ часто ассоциируют именно с компьютерными технологиями, и это не случайно: появление компьютеров вывело ИТ на новый уровень, как когда-то телевидение.

История развития информационных технологий

История информационных технологий берёт свое начало задолго до возникновения современной дисциплины "информатика", которая появилась в 20-м веке. Ввиду возрастания потребностей человечества в обработке всё большего объёма данных, средства получения информации совершенствовались от самых ранних механических изобретений до современных компьютеров. Также в рамках информационных технологий идёт развитие сопутствующих математических теорий, которые сейчас формируют современные концепции. Условно историю развития ИТ можно разделить на развитие вычислительной техники и в дальнейшем программного обеспечения, основные вехи которых ниже кратко и представим.

Развитие вычислительной техники

Самым ранним из известных механических аналогов компьютера является антикитерский механизм. Он был предназначен для расчета астрономических позиций. Такой механизм был обнаружен в 1901 году на развалинах греческого острова Андикитира между Китирой и Критом и был датирован 100 г. до н. э. Технологические артефакты подобной сложности больше не появлялись до 14-го века, когда в Европе были изобретены механические астрономические часы.
Механические аналоговые вычислительные устройства появились сотни лет спустя в средневековом исламском мире. Примерами устройств этого периода являются механический мотор астролябии Абу Райхан аль-Бируни и торкветум Джабир ибн Афлаха. Мусульманские инженеры построили ряд автоматов, в том числе музыкальных, которые могут быть "запрограммированы", чтобы играть различные музыкальные композиции.
После того, как в начале 17 века Джон Непер открыл логарифмы для вычислительных целей, последовал период значительного прогресса среди изобретателей и учёных в создании инструментов расчёта. В 1623 году Вильгельм Шиккард разработал вычислительную машину, но отказался от проекта, когда прототип, который он начал строить, был уничтожен пожаром в 1624 году. Около 1640 года Блез Паскаль, ведущий французский математик, построил первое механическое устройство сложения. Затем, в 1672 году, Готфрид Вильгельм Лейбниц изобрёл ступенчатый калькулятор, который он собрал в 1694 году.
В 1837 году Чарльз Бэббидж описал свою первую аналитическую машину, которая считается наиболее ранней конструкцией современного компьютера. Аналитическая машина имела расширяемую память, арифметическое устройство и логические схемы с возможностью интерпретировать язык программирования с циклами и условными ветвлениями. Хотя она не была построена, проект был хорошо изучен и отражал идею полноты по Тьюрингу. Аналитическая машина имела бы объем памяти меньше 1 килобайта и тактовую частоту меньше 10 Гц. Для возможности создания первого современного компьютера ещё требовалось значительное развитие теории математики и электроники.
После 1920-х годов выражение вычислительная машина относят к любым машинам, которые выполняли работу человека-компьютера, особенно к тем, которые были разработаны в соответствии с эффективными методами тезиса Чёрча - Тьюринга. Этот тезис формулируется как: "Всякий алгоритм может быть задан в виде соответствующей машины Тьюринга или частично рекурсивного определения, а класс вычислимых функций совпадает с классом частично рекурсивных функций и с классом функций, вычислимых на машинах Тьюринга" Название вычислительная машина с 1940-х начало вытесняться понятием компьютер. Начиная с того, как значения перестали зависеть от физических характеристик (как в аналоговых машинах), логический компьютер, основанный на цифровом оборудовании, был в состоянии сделать всё, что может быть описано чисто механической системой.
В 1937 году Алан Тьюринг представил свою идею того, что сейчас называется машиной Тьюринга. Теоретическая машина Тьюринга стала гипотетическим устройством, теоретизированным для того, чтобы изучать свойства такого оборудования. Предвидя современные компьютеры, которые имеют возможность хранить программы, он описал то, что стало известно, как Универсальная машина Тьюринга.
В 1946-м году была создана модель компьютерной архитектуры, которая стала известна как архитектура фон Неймана. С 1950 года модель фон Неймана обеспечила единство конструкций последующих компьютеров. Она считалась новаторской, поскольку фон Нейман ввел представление, позволяющее использовать машинные команды и распределять области памяти. Модель Неймана состоит из 3 основных частей: арифметическо-логическое устройство (АЛУ), память(ОП) и блок управления памятью.

В 1941 году Конрад Цузе разработал первый в мире функциональный программно-управляемый Тьюринг-полный компьютер, Z3. Цузе отметил, что вычислительная машина Z2 считается первым компьютером с контролируемым процессом. В 1941 году он основал одно из первых компьютерных предприятий по производству Z4, который стал первым коммерческим компьютером в мире. В 1946 году он разработал первый язык программирования высокого уровня, Планкалкюль. В 1944 году был запущен знаменитый Марк I - первый американский программируемый компьютер. Но первой электронной вычислительной машиной обычно называют ЭНИАК, разработка которой велась под руководством Джон Мокли и Д.Эккерта и закончилась в 1946 году. Машина ЭНИАК была установлена в Пенсильванском университете. Она состояла из 18000 электронных ламп и 1500 реле и потребляла около 150 кВт электроэнергии. Программное управление последовательностью выполнения операций осуществлялось с помощью штекеров и наборных полей, как в счетно-аналитических машинах. Настроить ENIAC на какую-нибудь задачу означало вручную изменить подключение 6000 проводов. 2 октября 1955 ENIAC была остановлен. Среди других значительных разработок компания IBM 13 сентября 1956 представила первый накопитель на жестких магнитных дисках RAMAC объёмом 5 Мегабайт, 12 сентября 1958 в компании Texas Instruments заработала первая микросхема (изобретателями микросхемы считают Джека Килби и одного из основателей Intel Роберта Нойса).

7 апреля 1964 года фирма IBM объявила о создании семейства компьютеров System 360 - первой серии масштабируемых компьютеров, впоследствии ставшая примером открытого стандарта, когда один производитель компьютерного оборудования мог произвести оборудование, совместимое с оборудованием другого производителя; широкое распространение System 360 де-факто установило стандарт байта, состоящего из 8 битов, и ввело в широкое употребление шестнадцатеричную систему счисления в программировании. В 1966 году Роберт Нойс и Гордон Мур основывают корпорацию Intel. Эта компания начинает с создания микрочипов памяти, но постепенно превращается в компанию по производству микропроцессоров.
Отметим, что в 1950-60х годах компьютеры были доступны только крупным компаниям из-за своих размеров и цены. В конкурентной борьбе за увеличение продаж фирмы, производящие компьютеры, стремились к удешевлению и миниатюризации своей продукции. Для этого использовались все современные достижения науки: память на магнитных сердечниках, транзисторы, и наконец микросхемы. К 1965 году мини-компьютер PDP-8 занимал объём сопоставимый с бытовым холодильником, стоимость составляла примерно 20 тысяч долларов, кроме того, наблюдалась тенденция к дальнейшей миниатюризации.
В 1974-м году фирма MITS начало производство компьютера Altair 8800, который, как считается, положил начало всем любительским персональным компьютерам. Одной из причин успеха этого компьютера была простота архитектуры. В 1975 году фирма MOS Technology, Inc. начало производство компьютера KIM-1, который, при стоимости 245 долларов США обладал более дружественным интерфейсом по сравнению с популярным и более дорогим Altair 8800, что сделало его очень популярным у радиолюбителей и энтузиастов.
В 1976 году начался кустарный выпуск Apple I - компьютера, который послужил предтечей развития одного из современных производителей персональных компьютеров, Apple Computer. В июне 1977 года первый серийно выпускавшийся Apple II предложил пользователям интегрированную клавиатуру, цветную графику, звук, пластиковый корпус и восемь слотов расширения.

В августе 1977 года начался выпуск Tandy Radio Shack TRS-80 - первого домашнего компьютера, стоившего менее 600 долларов США. В декабре 1977 года появился Commodore PET - первый компьютер, в комплект поставки которого входили клавиатура, монитор, накопитель на магнитной ленте (специальный фирменный магнитофон). В 1978 году поступил в продажу Sinclair Mk14 по цене всего 39.95 английских фунтов. 12 августа 1981 года фирма IBM представила широкой публике первую модель персонального компьютера IBM PC 5150, ставшую фактическим родоначальником современных персональных компьютеров на архитектуре Intel x86. В 1981 году начались продажи Commodore VIC-20. На старте продаж это был самый дешевый персональный компьютер в США. Тем не менее аналогичный Sinclair ZX81 выпущенный в то же время на старте продаж в Британии стоит всего 49.95 английских фунтов. В апреле 1982 года появился ZX Spectrum - самый продаваемый английский компьютер; помог становлению индустрии программного обеспечения в Соединённом Королевстве. В частности, за заслуги в развитии общества (не только производство компьютеров) основатель компании Sinclair Research сэр Клайв Синклер был награждён низшим дворянским званием «Рыцарь королевского Ордена». В августе 1982 года начались продажи Commodore 64 - стал самым продаваемым компьютером всех времён и народов: продано более 20 миллионов машин. В 1983 году был разработан стандарт MSX на архитектуру бытового компьютера; компьютеры этого стандарта производились различными компаниями преимущественно в Японии.

В 1983 года на смену IBM PC пришёл IBM PC/XT, включавший в себя жесткий диск. В марте 1983 года Compaq начала продажи Compaq Portable - первого портативного компьютера, а также первого клона компьютеров серии IBM PC. В январе 1984 года - первый успешный серийно выпускаемый персональный компьютер с манипулятором типа "мышь" и полностью графическим интерфейсом, названный Apple Macintosh, то есть первый успешный компьютер, реализовавший идеи, заложенные в Xerox Alto в промышленном масштабе. 3 апреля 1986 года был выпущен первый ноутбук IBM PC Convertible от фирмы IBM.
Дальнейшее развитие вычислительной техники и программного обеспечения в 1900-х и 2000-х годах шло семимильными шагами и связано со значительным ростом вычислительных возможностей, объемов хранения и обработки информации, выполнением широкого ряда мультимедиа задач по созданию и обработке аудио- и видео-информации.

Развитие программного обеспечения

В 1964-м году компания Bell Labs, а также General Electric и исследователи из Масачусетского технологического института начали проект Multics OS. Из-за проблем с организацией интерфейса с пользователем проект был вскоре закрыт. Кен Томпсон и Брайан Керниган начали ее усовершенствовать в 1969 году, а в последствии назвали ее похожим именем - UNICS. Через некоторое время название сократили до UNIX. Операционная система была написана на ассемблере. В ноябре 1971 года была опубликована первая редакция UNIX. Первая коммерческая версия UNIX SYSTEM III(основана на седьмой версии системы) опубликована в 1982 году.

Корпорация IВМ поручила Microsoft работу над операционной системой для новых моделей персональных компьютеров IВМ-РС. В конце 1981 года вышла первая версия новой операционной системы - PC DOS 1.0. Далее РС-DOS использовалась только в компьютерах IВМ, а Microsoft досталась ее собственная модификация MS-DOS. В 1982-м одновременно появились РС-DOS и МS-DOS версии 1.1 с некоторыми добавленными и расширенными возможностями. Позже эти операционные системы объединили, и вплоть до шестой версии они мало чем отличались. Принципы заложенные в МS-DOS были позже использованы в дальнейших операционных системах компании Microsoft.
Первая версия Mac OS была опубликована в 1984 году вместе с первым персональным компьютером Macintosh компанией Apple. Соединив уже имеющиеся наработки и собственные идеи, программисты компании Apple создали Mac OS, первую графическую операционную систему. 24 марта 2000 года новый главный исполнительный директор Apple Стив Джобс представил Mac OS X 10.0, отличающуюся высокой стабильностью, что делает ее непохожей на предшественницу, Mac OS 9.
Первая Windows, которая вышла в свет в 1982 году, отличалась от своих современников, во-первых, графическим интерфейсом (в тот момент такой был только у Mac OS), а также возможностью запускать одновременно несколько программ и переключаться между ними. В ноябре 1985 вышла Windows 1.0, далее были версии 2.0, 3.0, Windows NT 3.5, в которую на системном уровне была встроена поддержка локальной сети. 24 августа 1995 - дата официального релиза Windows 95. Чуть позже вышла новая Windows NT. Если Windows 95 был предназначен, скорее, для пользовательских компьютеров, то NT использовался больше в корпоративной среде. В 1998 году вышла Windows 98 со встроенным Internet Explorer 4.0 и Outlook, с возможностью устанавливать на рабочий стол веб-страницу (так называемый Active Desktop) и активные каналы, которые были предтечей современного RSS. На данный момент наиболее распространенными являются Windows XP, 7 и 8.
Также набирают популярность мобильные операционные системы. Это операционные системы, которые работают на смартфонах, планшетах или других цифровых мобильных устройствах. Современные мобильные операционные системы сочетают в себе черты операционной системы персонального компьютера с такими особенностями, как сенсорный экран, сотовая связь, Bluetooth, Wi-Fi, GPS навигация, фотоаппарат, видеокамера, распознавание речи, диктофон, MP3-плеер, NFC. Наиболее распространенными мобильными операционными системами являются Android, iOS, Windows Phone, Firefox OS, Tizen.

В следующей статье будут подробнее рассмотрены особенности и сферы применения современных информационных технологий.

История возникновения информационных технологий уходит своими корнями в глубокую древность. Первым этапом можно считать изобретение простейшего цифрового устройства – счетов. Счеты были изобретены совершенно независимо и практически одновременно в Древней Греции, Древнем Риме, Китае, Японии и на Руси.

Счеты в Древней Греции назывались абак, то есть доска или еще «саламинская доска» (остров Саламин в Эгейском море). Абак представлял собой посыпанную песком доску с бороздками, на которых камешками обозначались числа. Первая бороздка означала единицы, вторая – десятки и т.д. Во время счета на любой из них могло набраться более 10 камешков, что означало добавлениеодного камешка в следующую бороздку. В Риме абак существовал в другом виде: деревянные доски заменили мраморными, шарики также делали из мрамора.

В Китае счеты «суан-пан» немного отличались от греческих и римских. В их основе лежало не число десять, а число пять. В верхней части «суан-пан» находились ряды по пять косточек-единиц, а в нижней части – по две. Если требовалось, скажем, отразить число восемь, в нижней части ставили одну косточку, а в части единиц – три. В Японии существовало аналогичное устройство, только название было уже «серобян».

На Руси счеты были значительно проще – кучка единиц и кучки десятков с косточками или камешками. Но в XV в. получит распространение «дощаный счет», то есть применение деревянной рамки с горизонтальными веревочками, на которых были нанизаны косточки.

Обычные счеты были родоначальниками современных цифровых устройств. Однако, если одни из объектов окружающего материального мира поддавались непосредственному счетному, поштучному исчислению, то другие требовалипредварительного измерения числовых величин. Соответственно, исторически сложились два направления развития вычислений и вычислительной техники: цифровое и аналоговое.

Аналоговое направление, основанное на исчислении неизвестного физического объекта (процесса) по аналогии с моделью известного объекта (процесса), получило наибольшее развитие в период конца XIX – середины XX века. Основоположником аналогового направления является автор идеи логарифмического исчисления шотландский барон – Джон Непер, подготовившийв 1614г. научный фолиант «Описание удивительной таблицы логарифмов». Джон Непер не только теоретически обосновал функции, но и разработал практическую таблицу двоичных логарифмов.

Принцип изобретения Джона Непера заключается в соответствии логарифма (показателя степени, в которую нужно возвести число) заданному числу. Изобретение упростило выполнение операций умножения и деления, так как при умножении достаточно сложить логарифмы чисел.

В 1617г. Непер изобрел способ перемножения чисел с помощью палочек. Специальное устройство состояло из разделенных на сегменты стерженьков, которые можно было располагать таким образом, что при сложении чисел в прилегающих друг к другу по горизонтали сегментах получался результат умножения этих чисел.

Несколько позднее англичанин Генри Бриггс составил первую таблицу десятичных логарифмов. На основе теории и таблиц логарифмов были созданы первые логарифмические линейки. В 1620 г. англичанин Эдмунд Гюнтер применил для расчетов на популярном в те времена пропорциональном циркуле специальную пластинку, на которую были нанесены параллельно друг другу логарифмы чисел и тригонометрических величин (так называемые «шкалы Гюнтера»). В 1623 г. Уильям Отред изобрел прямоугольную логарифмическую линейку, а Ричард Деламейн в 1630 г. – круговую. В 1775 г. библиотекарь Джон Робертсон добавил к линейке «бегунок», облегчающий считывание чисел с разных шкал. И, наконец, в 1851-1854 гг. француз Амедей Маннхейм резко изменил конструкцию линейки, придав ей почти что современный вид. Полное господство логарифмической линейки продолжалось вплоть до 20-30-х гг. XX века, пока не появились электрические арифмометры, которые позволяли проводить несложные арифметические вычисления с гораздо большей точностью. Логарифмическая линейка постепенно утратила свои позиции, но оказалась незаменимой для сложных тригонометрических вычислений и потому сохранилась и продолжает использоваться и в наши дни.

Большинство людей, пользующихся логарифмической линейкой, успешно проводит типовые вычислительные операции. Однако, сложные операции расчета интегралов, дифференциалов, моментов функций и т. д., которые осуществляются в несколько этапов по специальным алгоритмам и требуют хорошей математической подготовки, вызывают значительные затруднения. Все это обусловило появление в свое время целого класса аналоговых устройств, предназначенных для расчета конкретных математических показателей и величин пользователем, не слишком искушенным в вопросах высшей математики. В начале-середине XIX века были созданы: планиметр (вычисление площади плоских фигур), курвиметр (определение длины кривых), дифференциатор, интегратор, интеграф (графические результаты интегрирования), интегример (интегрирование графиков) и др. устройства. Автором первого планиметра (1814 г.) является изобретатель Германн. В 1854 г. появился полярный планиметр Амслера. С помощью интегратора фирмы «Коради» вычислялись первый и второй моменты функции. Существовали универсальные наборы блоков, например, комбинированный интегратор КИ-3, из которых пользователь в соответствии с собственными запросами, мог выбрать необходимое устройство.

Цифровое направление развития техники вычислений оказалось более перспективным и составляет сегодня основу компьютерной техники и технологии. Еще Леонардо да Винчи в начале XVI в. создал эскиз 13-разрядного суммирующего устройства с десятизубными кольцами. Хотя работающее устройство на базе этих чертежей было построено только в XX в., все же реальность проекта Леонардо да Винчи подтвердилась.

В 1623 г. профессорВильгельм Шиккард в письмах И. Кеплеру описал устройство счетной машины, так называемых «часов для счета». Машина также не была построена, но сейчас на основе описания создана работающая ее модель.

Первая построенная механическая цифровая машина, способная суммировать числа с соответствующим увеличением разрядов, была создана французским философом и механиком Блэзом Паскалем в 1642 г. Назначением этой машины было облегчить работу отца Б. Паскаля – инспектора по сбору налогов. Машина имела вид ящика с многочисленными шестернями, среди которых находилась основная расчетная шестерня. Расчетная шестерня при помощи храпового механизма соединялись с рычагом, отклонение которого позволяло вводить в счетчик однозначные числа и проводить их суммирование. Проводить вычисления с многозначными числами на такой машине было достаточно сложно.

В 1657 г. два англичанина Р. Биссакар и С. Патридж совершенно независимо друг от друга разработали прямоугольную логарифмическую линейку. В неизменном виде логарифмическая линейка существует и по сей день.

В 1673 г. известный немецкий философ и математик Готфрид Вильгельм Лейбниц изобрел механический калькулятор – более совершенную счетную машину, способную выполнять основные арифметические действия. При помощи двоичной системы счисления машина могла складывать, вычитать, умножать, делить и извлекать квадратные корни.

В 1700 г. Шарль Перро издал книгу своего брата «Сборник большого числа машин собственного изобретения Клода Перро». В книге описывается суммирующая машина с зубчатыми рейками вместо зубчатых колес под названием «рабдологический абак». Название машины состоит из двух слов: древнего «абак» и «рабдология» – средневековая наука о выполнении арифметических операций с помощью маленьких палочек с цифрами.

Готфрид Вильгейм Лейбниц в 1703 г., продолжая серию своих работ, пишет трактат «Explication de I"Arithmetique Binaire» об использовании двоичной системы счисления в вычислительных машинах. Позже, В 1727 г. на основе работ Лейбница была создана счетная машина Джакоба Леопольда.

Немецкий математик и астроном Христиан Людвиг Герстен в 1723 г. создал арифметическую машину. Машина высчитывала частное и число последовательных операций сложения при умножении чисел. Кроме того была предусмотрена возможность контроля за правильностью ввода данных.

В 1751 г. француз Перера на основе идей Паскаля и Перро изобретает арифметическую машину. В отличие от других устройств она была компактнее, так как ее счетные колеса располагались не на параллельных осях, а на единственной оси, проходившей через всю машину.

В 1820 г. состоялся первый промышленный выпуск цифровых счетных машин арифмометров. Первенство принадлежит здесь французу Тома де Кальмару. В России к первым арифмометрам данного типа относятся самосчеты Буняковского (1867 г.). В 1874 г. инженер из Петербурга Вильгодт Однер значительно усовершенствовал конструкцию арифмометра, применив для ввода чисел колеса с выдвижными зубьями (колеса «Однера»). Арифмометр Однера позволял проводить вычислительные операции со скоростью до 250 действий с четырехзначными цифрами за один час.

Вполне возможно, что развитие цифровой техники вычислений так и осталось бы на уровне малых машин, если бы не открытие француза Жозефа Мари Жаккара, который в начале XIX века применил для управления ткацким станком карту с пробитыми отверстиями (перфокарту). Машина Жаккара программировалась при помощи целой колоды перфокарт, каждая из которых управляла одним ходом челнока так, что при переходе к новому рисунку, оператор заменял одну колоду перфокарт другой. Учёные попытались использовать это открытие для создания принципиально новой счётной машины, выполняющейоперации без вмешательства человека.

В 1822 г. английский математик Чарльз Бэббидж создал программно-управляемую счетную машину, представляющую собой прототип сегодняшних периферийных устройств ввода и печати. Она состояла из вращаемых вручную шестеренок и валиков.

В конце 80-х гг. XIX века сотрудник национального бюро переписи населения США Герман Холлерит сумел разработать статистический табулятор, способный автоматически обрабатывать перфокарты. Создание табулятора положило начало производству нового класса цифровых счётно-перфорационных (счётно-аналитических) машин, которые отличались от класса малых машин оригинальной системой ввода данных с перфокарт. К середине XX века счетно-перфорационныемашины выпускались фирмами IBM и Remington Rand в виде достаточно сложных перфо-комплексов, включающих: перфораторы (набивка перфокарт), контрольные перфораторы (повторная набивка и контроль несовпадения отверстий), сортировочные машины (раскладка перфокарт по группам в соответствии с определенными признаками), раскладочные машины (более тщательная раскладка перфокарт и составление таблиц функций), табуляторы (чтение перфокарт, вычисление и вывод на печать результатов расчета), мультиплееры (операции умножения для чисел, записанных на перфокартах). Лучшие модели перфокомплексов обрабатывали до 650 карт в минуту, а мультиплеер в течение часа умножал 870 восьмизначных чисел. Наиболее совершенная модель электронного перфоратора Model 604 фирмы IBM, выпущенная в 1948 г., имела программируемую панель команд обработки данных и обеспечивала возможность проведения до 60 операций с каждой перфокартой .

В начале XX века появились арифмометры с клавишами для ввода чисел. Повышение степени автоматизации работы арифмометров позволило создать счетные автоматы, или, так называемые, малые счетные машины с электроприводом и автоматическим выполнением за час до 3 тысяч операций с трех- и четырехзначными цифрами. В промышленном масштабе малые счетные машины в первой половине XX века выпускались компаниями Friden, Burroughs, Monro и др. Разновидностью малых машин являлись бухгалтерские счетно-записывающие и счетно-текстовые машины, выпускавшиеся в Европе фирмой Olivetti, а в США –- National Cash Register (NCR). В России в этот период были широко распространены «Мерседесы» – бухгалтерские машины, предназначенные для ввода данных и расчета конечных остатков (сальдо) по счетам синтетического учета.

Основываясь на идеях и изобретениях Бэббиджа и Холлерита, профессор Гарвардского университета Говард Эйкен смог создать в 1937 – 1943 гг. вычислительную перфорационную машину более высокого уровня под названием «Марк-1», которая работала на электромагнитных реле. В 1947 г. появилась машина данной серии «Марк-2», содержащая 13 тысяч реле.

Примерно в этот же период появились теоретические предпосылки и техническая возможность создания более совершенной машины на электрических лампах. В 1943 г. к разработке такой машины приступили сотрудники Пенсильванского университета (США) под руководством Джона Мочли и Проспера Эккерта, с участием знаменитого математика Джона фон Неймана. Результат их совместных усилий ламповая вычислительная машина ENIAC (1946 г.), которая содержала 18 тысяч ламп и потребляла 150 кВт электроэнергии. В процессе работы над ламповой машиной Джон фон Нейман опубликовал доклад (1945 г.), являющийся одним из наиболее важных научных документов теории развития вычислительной техники. В докладе были обоснованы принципы устройства и функционированияуниверсальных вычислительных машин нового поколения компьютеров, которые вобрали в себя все лучшее, что было создано многими поколениями ученых, теоретиков и практиков.

Это привело к созданию компьютеров, так называемого, первого поколения. Они характерны применением вакуумно-ламповой технологии, систем памяти на ртутных линиях задержки, магнитных барабанов и электронно-лучевых трубок Вильямса. Данные вводились с помощью перфолент, перфокарт и магнитных лент с хранимыми программами. Использовались печатающие устройства. Быстродействие компьютеров первого поколения не превышало 20 тыс. операций в секунду.

Далее развитие цифровой техники вычислении происходило быстрыми темпами. В 1949 г. по принципам Неймана английским исследователем Морисом Уилксом был построен первый компьютер. Вплоть до середины 50-х гг. в промышленном масштабе выпускались ламповые машины. Однако, научные исследования в области электроники открывали все новые перспективы развития. Ведущие позиции в этой области занимали США. В 1948 г. Уолтер Браттейн, Джон Бардин из компании AT&T изобрели транзистор, а в 1954 г. Гордон Тип из компании Texas Instruments применил для изготовления транзистора кремний. С 1955 года стали выпускаться компьютеры на транзисторах, имеющие меньшие габариты, повышенное быстродействие и пониженное потребление энергии в сравнении с ламповыми машинами. Сборка компьютеров проходила вручную, под микроскопом.

Применение транзисторов ознаменовало переход к компьютерам второго поколения. Транзисторы заменили электронные лампы и компьютеры стали более надежными и быстрыми(до 500 тысяч операций в секунду). Усовершенствовались и функциональные устройства – работы с магнитными лентами, памяти на магнитных дисках.

В 1958 г. были изобретены: первая интервальная микросхема (Джек Килби -Texas Instruments) и первая промышленная интегральная микросхема (Chip), автор которой Роберт Нойс основал впоследствии (1968 год) всемирно известную фирму Intel (INTegrated ELectronics). Компьютеры на интегральных микросхемах, выпуск которых был налажен с 1960 года, были еще более скоростными и малогабаритными.

В 1959 г. исследователи фирмы Datapoint сделали важный вывод о том, что компьютеру необходим центральный арифметико-логический блок, который мог бы управлять вычислениями, программами и устройствами. Речь шла о микропроцессоре. Сотрудники Datapoint разработали принципиальные технические решения по созданию микропроцессора и совместно с фирмой Intel в середине 60-х годов стали осуществлять его промышленную доводку. Первые результаты были не совсем удачными микропроцессоры Intel работали гораздо медленнее, чем ожидалось. Сотрудничество Datapoint и Intel прекратилось.

В 1964 г. были разработаны компьютеры третьего поколения с применением электронных схем малой и средней степени интеграции (до 1000 компонентов на кристалл). С этого времени стали проектировать не отдельный компьютер, а скорее целое семейство компьютеров на базе применения программного обеспечения. Примером компьютеров третьего поколения можно считать созданные тогда американский IBM 360, а также советские ЕС 1030 и 1060. В конце 60-х гг. появились мини-компьютеры, а в 1971 г. – первый микропроцессор. Годом позже компания Intel выпускает первый широко известный микропроцессор Intel 8008, а в апреле 1974 г. – микропроцессор второго поколения Intel 8080.

С середины 70-х гг. были разработаны компьютеры четвертого поколения. Они характерны использованием больших и сверхбольших интегральных схем (до миллиона компонентов на кристалл). Первые компьютеры четвертого поколения выпустила фирма Amdahl Corp. В этих компьютерах использовались быстродействующие системы памяти на интегральных схемах емкостью несколько мегабайт. При выключении данные оперативной памяти переносились на диск. При включении проходила самозагрузка. Производительность компьютеров четвертого поколения – сотни миллионов операций в секунду.

Также в середине 70-х появились первые персональные компьютеры. Дальнейшая история компьютеров тесно связана с развитием микропроцессорной техники. В 1975 г. на основе процессора Intel 8080 был создан первый массовый персональный компьютер Альтаир. К концу 70-х гг., благодаря усилиям фирмы Intel, разработавшей новейшие микропроцессоры Intel 8086 и Intel 8088, возникли предпосылки для улучшения вычислительных и эргономических характеристик компьютеров. В этот период крупнейшая электротехническая корпорация IBM включилась в конкурентную борьбу на рынке и попыталась создать персональныйкомпьютер на основе процессора Intel 8088. В августе 1981 г. появился компьютер IBM PC, быстро завоевавший огромную популярность. Удачная конструкция IBM PC предопределила его использование в качестве стандарта персональных компьютеров конца XX в.

С 1982 г. ведутся разработки компьютеров пятого поколения. Их основой является ориентация на обработку знаний. Ученые уверены в том, что обработка знаний, свойственная только человеку, может вестись и компьютером с целью решения поставленных проблем и принятия адекватных решений.

В 1984 г. фирма Microsoft представила первые образцы операционной системы Windows. Американцы до сих пор считают это изобретение одним из выдающихся открытий XX в.

Важным оказалось предложение, сделанное в марте 1989 г. сотрудником международного европейского научного центра (CERN) Тимом Бернерс-Ли. Суть идеи состояла в создании новой распределенной информационной системы под названием World Wide Web. Информационная система на базе гипертекста смогла бы объединить информационныересурсы CERN (базы данных отчетов, документацию, почтовые адреса и т.д.). Проект был принят в 1990 г.

Лекция 1. Понятие об информационных технологиях.

Тема № 1, Занятие № 1

УЧЕБНО - МЕТОДИЧЕСКАЯ РАЗРАБОТКА

Промышленной и экологической безопасности

Кафедра

(лекция)

ПО УЧЕБНОЙ ДИСЦИПЛИНЕ «Информационные технологии в управлении рисками»

На ранних этапах истории для синхронизации выполняемых действий человеку потребовались кодированные сигналы общения. Человеческий мозг решил эту задачу без искусственно созданных инструментов: развилась человеческая речь. Речь являлась и первым носителем знаний. Знания накапливались и передавались от поколения к поколению в виде устных рассказов. Природные возможности человека по накоплению и передаче знаний получило первую технологическую поддержку с созданием письменности. Процесс совершенствования носителей информации еще продолжается: камень - кость - глина - папирус - шелк - бумага магнитные и оптические носители - кремний - ... Письменность стала первым историческим этапом информационной технологии. Второй этап информационной технологии - возникновение книгопечатания. Оно стимулировало развитие наук, ускоряло темпы накопления профессиональных знаний. Цикл: знания - наука - общественное производство - знания замкнулся. Спираль технологической цивилизации начала раскручиваться с бешеной скоростью. Книгопечатание создало информационные предпосылки роста производительных сил. Но информационная революция связанна с созданием ЭВМ в конце 40-х годов двадцатого века. С этого же времени начинается эра развития информационных технологий. Весьма важным свойством информационной технологии является то, что для нее информация не только продукт, но и исходное сырье. Электронное моделирование реального мира на ЭВМ требует обработки существенно большего объема информации, чем содержит конечный результат. В развитии информационной технологии можно выделить этапы. Каждый этап характеризуется определенным признаком.

1. На начальном этапе развития информационных технологий (1950-1960-е годы) в основе взаимодействия человека и ЭВМ лежали машинные языки. ЭВМ была доступна только профессионалам.

2. В следующем этапе (1960-1970-е годы) создаются операционные системы. Ведется обработка нескольких заданий, формулируемых разными пользователями; основная цель - наибольшая загрузка машинных ресурсов.

3. Третий этап (1970-1980-е годы) характеризуется изменением критерия эффективности обработки данных, основными стали человеческие ресурсы по разработке и сопровождению программного обеспечения. К этому этапу относятся распространение мини- ЭВМ. Осуществляется интерактивный режим взаимодействия нескольких пользователей.

4. Четвертый этап (1980-1990-е годы) новый качественный скачек технологии разработки программного обеспечения. Центр тяжести технологических решений переносятся на создания средств взаимодействия пользователей с ЭВМ при создании программного продукта. Ключевое звено новой информационной технологии - представление и обработка знаний. Тотальное распространение персональных ЭВМ. Заметим, что эволюция всех поколений ЭВМ происходит с постоянным темпом - по 10 лет на поколение. Прогнозы предполагают сохранение темпов до начала 21 века. Каждая смена поколений средств информационной технологии требует переобучения и радикальной перестройки мышления специалистов и пользователей, смена оборудования и создания более массовой вычислительной техники. Информационные технологии, как передовая область науки и техники определяет ритм времени технического развития всего общества Инвестиции в инфраструктуру и сервисы Интернет вызвали бурный рост отрасли ИТ в конце 90-х годов XX века.

Основные данные о работе

Введение

Глава 1. Развитие информационных технологий в период с XIV по XVII век

Глава 2. Развитие информационных технологий с XVIII по XX век

Заключение

Глоссарий

Список использованных источников

Список сокращений

Введение

Я выбрала эту тему, потому что считаю ее интересной и актуальной. Далее я попытаюсь объяснить, почему я сделала такой выбор и изложу некоторые исторические данные по этой теме.

В истории человечества можно выделить несколько этапов, которые человеческое общество последовательно проходило в своем развитии. Эти этапы различаются основным способом обеспечения обществом своего существования и видом ресурсов, использующимся человеком и играющим главную роль при реализации данного способа. К таким этапам относятся: этапы собирательства и охоты, аграрный и индустриальный. В наше время наиболее развитые страны мира находятся на завершающей стадии индустриального этапа развития общества. В них осуществляется переход к следующему этапу, который назван "информационным". В данном обществе определяющая роль принадлежит информации. Инфраструктуру общества формируют способы и средства сбора, обработки, хранения и распределения информации. Информация становится стратегическим ресурсом.

Поэтому со второй половины ХХ века в цивилизованном мире основным, определяющим фактором социально-экономического развития общества становится переход от "экономики вещей" к "экономике знаний", происходит существенное увеличение значения и роли информации в решении практически всех задач мирового сообщества. Это является убедительным доказательством того, что научно-техническая революция постепенно превращается в интеллектуально-информационную, информация становится не только предметом общения, но и прибыльным товаром, безусловным и эффективным современным средством организации и управления общественным производством, наукой, культурой, образованием и социально-экономическим развитием общества в целом.

Современные достижения информатики, вычислительной техники, оперативной полиграфии и телекоммуникации породили новый вид высокой технологии, а именно информационную технологию.

Результаты научных и прикладных исследований в области информатики, вычислительной техники и связи создали прочную базу для возникновения новой отрасли знания и производства - информационной индустрии. В мире успешно развивается индустрия информационных услуг, компьютерного производства и компьютеризация, как технология автоматизированной обработки информации; небывалого размаха и качественного скачка достигла индустрия и технология в области телекоммуникации - от простейшей линии связи до космической, охватывающей миллионы потребителей и представляющей широкий спектр возможностей по транспортировке информации и взаимосвязи ее потребителей.

Весь этот комплекс (потребитель с его задачами, информатика, все технические средства информационного обеспечения, информационная технология и индустрия информационных услуг и др.) составляет инфраструктуру и информационное пространство для осуществления информатизации общества.

Таким образом, информатизация это комплексный процесс информационного обеспечения социально-экономического развития общества на базе современных информационных технологий и соответствующих технических средств.

И поэтому проблема информатизации общества стала приоритетной и значение ее в обществе постоянно нарастает.

Глава 1. Развитие информационных технологий в период с XIV по XVIII век

История создания средств цифровой вычислительной техники уходит вглубь веков. Она увлекательна и поучительна, с нею связаны имена выдающихся ученых мира.

В дневниках гениального итальянца Леонардо да Винчи (1452 - 1519), уже в наше время был обнаружен ряд рисунков, которые оказались эскизным наброском суммирующей вычислительной машины на зубчатых колесах, способной складывать 13- разрядные десятичные числа. Специалисты известной американской фирмы IBM воспроизвели машину в металле и убедились в полной состоятельности идеи ученого. Его суммирующую машину можно считать изначальной вехой в истории цифровой вычислительной техники. Это был первый цифровой сумматор, своеобразный зародыш будущего электронного сумматора - важнейшего элемента современных ЭВМ, пока еще механический, очень примитивный (с ручным управлением). В те далекие от нас годы гениальный ученый был, вероятно, единственным на Земле человеком, который понял необходимость создания устройств для облегчения труда при выполнении вычислений.

Однако потребность в этом была настолько малой, что лишь через сто с лишним лет после смерти Леонардо да Винчи нашелся другой европеец - немецкий ученый Вильгельм Шиккард (1592-1636), не читавший, естественно, дневников великого итальянца, который предложил свое решение этой задачи. Причиной, побудившей Шиккарда разработать счетную машину для суммирования и умножения шестиразрядных десятичных чисел, было его знакомство с польским астрономом И.Кеплером. Ознакомившись с работой великого астронома, связанной, в основном, с вычислениями, Шиккард загорелся идеей оказать ему помощь в нелегком труде. В письме, на его имя, отправленном в 1623 г., он приводит рисунок машины и рассказывает как она устроена. К сожалению, данных о дальнейшей судьбе машины история не сохранила. По-видимому, ранняя смерть от чумы, охватившей Европу, помешала ученому выполнить его замысел.

Об изобретениях Леонардо да Винчи и Вильгельма Шиккарда стало известно лишь в наше время. Современникам они были неизвестны.

В XYII веке положение меняется. В 1641 - 1642 гг. девятнадцатилетний Блез Паскаль (1623 - 1662), тогда еще мало кому известный французский ученый, создает действующую суммирующую машину ("паскалину") см. приложение А. В начале он сооружал ее с одной единственной целью - помочь отцу в расчетах, выполняемых при сборе налогов. В последующие четыре года им были созданы более совершенные образцы машины. Они были шести и восьми разрядными, строились на основе зубчатых колес, могли производить суммирование и вычитание десятичных чисел. Было создано примерно 50 образцов машин, Б.Паскаль получил королевскую привилегию на их производство, но практического применения "паскалины" не получили, хотя о них много говорилось и писалось (в основном, во Франции).

В 1673г. другой великий европеец, немецкий ученый Вильгельм Готфрид Лейбниц (1646 - 1716), создает счетную машину (арифметический прибор, по словам Лейбница) для сложения и умножения двенадцатиразрядных десятичных чисел. К зубчатым колесам он добавил ступенчатый валик, который позволял осуществлять умножение и деление. "...Моя машина дает возможность совершать умножение и деление над огромными числами мгновенно, притом не прибегая к последовательному сложению и вычитанию", - писал В. Лейбниц одному из своих друзей.

В цифровых электронных вычислительных машинах (ЭВМ), появившихся более двух веков спустя, устройство, выполняющее арифметические операции (те же самые, что и "арифметический прибор" Лейбница), получило название арифметического. Позднее, по мере добавления ряда логических действий, его стали называть арифметико-логическим. Оно стало основным устройством современных компьютеров.

Таким образом, два гения XVII века, установили первые вехи в истории развития цифровой вычислительной техники.

Заслуги В.Лейбница, однако, не ограничиваются созданием "арифметического прибора". Начиная со студенческих лет и до конца жизни он занимался исследованием свойств двоичной системы счисления, ставшей в дальнейшем, основной при создании компьютеров. Он придавал ей некий мистический смысл и считал, что на ее базе можно создать универсальный язык для объяснения явлений мира и использования во всех науках, в том числе в философии. Сохранилось изображение медали, нарисованное В.Лейбницем в 1697 г., поясняющее соотношение между двоичной и десятичной системами исчисления (см. приложение Б).

В 1799 г. во Франции Жозеф Мари Жакар (1752 - 1834) изобрел ткацкий станок, в котором для задания узора на ткани использовались перфокарты. Необходимые для этого исходные данные записывались в виде пробивок в соответствующих местах перфокарты. Так появилось первое примитивное устройство для запоминания и ввода программной (управляющей ткацким процессом в данном случае) информации.

В 1795 г. там же математик Гаспар Прони (1755 - 1839), которому французское правительство поручило выполнение работ, связанных с переходом на метрическую систему мер, впервые в мире разработал технологическую схему вычислений, предполагающую разделение труда математиков на три составляющие. Первая группа из нескольких высококвалифицированных математиков определяла (или разрабатывала) методы численных вычислений, необходимые для решения задачи, позволяющие свести вычисления к арифметическим операциям - сложить, вычесть, умножить, разделить. Задание последовательности арифметических действий и определение исходных данных, необходимых при их выполнении ("программирование") осуществляла вторая, несколько более расширенная по составу, группа математиков. Для выполнения составленной "программы", состоящей из последовательности арифметических действий, не было необходимости привлекать специалистов высокой квалификации. Эта, наиболее трудоемкая часть работы, поручалась третьей и самой многочисленной группе вычислителей. Такое разделение труда позволило существенно ускорить получение результатов и повысить их надежность. Но главное состояло в том, что этим был дан импульс дальнейшему процессу автоматизации, самой трудоемкой (но и самой простой!) третьей части вычислений - переходу к созданию цифровых вычислительных устройств с программным управлением последовательностью арифметических операций.

Этот завершающий шаг в эволюции цифровых вычислительных устройств (механического типа) сделал английский ученый Чарльз Беббидж (1791 - 1871). Блестящий математик, великолепно владеющий численными методами вычислений, уже имеющий опыт в создании технических средств для облегчения вычислительного процесса (разностная машина Беббиджа для табулирования полиномов, 1812 - 1822гг.), он сразу увидел в технологии вычислений, предложенной Г.Прони, возможность дальнейшего развития своих работ. Аналитическая машина (так назвал ее Беббидж), проект которой он разработал в 1836 - 1848 годах, явилась механическим прототипом появившихся спустя столетие ЭВМ. В ней предполагалось иметь те же, что и в ЭВМ пять основных устройств: арифметическое, памяти, управления, ввода, вывода.

2024 printflip.ru. Компьютерные истории.